Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Recovery plays distinct roles in nanostructured and coarse-grained metallic materials. While static and dynamic recovery usually soften work-hardened, coarse-grained materials, static recovery has been shown to strengthen nanostructured metals. This study extends this understanding by demonstrating that dynamic recovery can also strengthen nanostructured metals under deformation. Tensile, creep, and plane strain compression tests on nanostructured aluminum reveal a trend of increasing strain-hardening with decreasing strain rate and increasing temperature. Molecular dynamics simulations further indicate that sudden strain rate reductions lead to an initial drop in flow stress, followed by strain hardening. These findings suggest that dynamic recovery could serve as an effective strengthening mechanism for nanostructured metals, offering improvements in uniform elongation.more » « lessFree, publicly-accessible full text available April 1, 2026
-
Ultrafine-grained and heterostructured materials are currently of high interest due to their superior mechanical and functional properties. Severe plastic deformation (SPD) is one of the most effective methods to produce such materials with unique microstructure-property relationships. In this review paper, after summarizing the recent progress in developing various SPD methods for processing bulk, surface and powder of materials, the main structural and microstructural features of SPD-processed materials are explained including lattice defects, grain boundaries and phase transformations. The properties and potential applications of SPD-processed materials are then reviewed in detail including tensile properties, creep, superplasticity, hydrogen embrittlement resistance, electrical conductivity, magnetic properties, optical properties, solar energy harvesting, photocatalysis, electrocatalysis, hydrolysis, hydrogen storage, hydrogen production, CO2 conversion, corrosion resistance and biocompatibility. It is shown that achieving such properties is not currently limited to pure metals and conventional metallic alloys, and a wide range of materials are processed by SPD, including high-entropy alloys, glasses, semiconductors, ceramics and polymers. It is particularly emphasized that SPD has moved from a simple metal processing tool to a powerful means for the discovery and synthesis of new superfunctional metallic and nonmetallic materials. The article ends by declaring that the borders of SPD have been extended from materials science and it has become an interdisciplinary tool to address scientific questions such as the mechanism of geological and astronomical phenomena and the origin of life. Keywords: Severe plastic deformation (SPD); Nanostructured materials; Ultrafine grained (UFG) materials; Gradient-structured materials, High-pressure torsion (HPT)more » « less
An official website of the United States government
